Date of Submission: 13/08/2019
Time: 12:00 to 12:30
Q. 1 Answer the following questions.

1) If (X, d) is a metric space than prove that $\left(X, \frac{d}{1+d}\right)$ is also a metric space.
2) State and prove Housedroff's principle.
3) Prove that a neighborhood of any point of metric space is an open set in metric space.
4) Is $\frac{4}{5}$ in cantor set? Justify your answer.
5) Prove that derived set of any any subset of metric space is closed.

M. P. SHAH ARTS \& SCIENCE COLLEGE, SURENDRANAGAR.

Assignment-2 B. Sc. Semester-V (2019-20)
Mathematics Paper- 05(A)
Date of Submission: 27/08/2019
Time: 12:00 to 12:30
Q. 1 Answer the following questions.

1) Let \boldsymbol{f} be a bounded function defined on $[a, b] . P$ and P^{*} are two partition of $[a, b]$ such that P^{*} is a refinement partition of P, then $L(p, f) \leq L\left(P^{*}, f\right) \leq U\left(P^{*}, f\right) \leq U(p, f)$.
2) State and prove Darboux's theorem.
3) State and prove necessary and sufficient condition for a bounded function f defined on $[a, b]$ to be

R-integrable.

4) Prove that bounded monotonic function defined on $[a, b]$ is R-integrable.
5) Find $\int_{0}^{1} x^{2}$ using definition of Riemann integrable.

Date of Submission: 06/09/2019
Time: 12:00 to 12:30
Q. 1 Answer the following questions.

1) Show that G is a commutative group if $(a b)^{i}=a^{i} b^{i}, \forall a, b \in G$, for any three conjugative integers.
2) Let G be a commutative group. Let $a, b \in G$ such that $O(a)=m$ and $O(b)=n$, then $O(a b)=$ $m n$ if $(m, n)=1$.
3) Prove that intersection of two subgroups of a group is again a subgroup.
4) Prove that the set A_{n} of all even permutations of $S_{n}(n \geq 2)$ is a subgroup of S_{n} of order $\frac{n!}{2}$.
5) Prove that a normalizer of a group G is a subgroup of G.

M. P. SHAH ARTS \& SCIENCE COLLEGE, SURENDRANAGAR.

Assignment-4 B. Sc. Semester-V (2019-20)
Mathematics Paper- 05(A)
Date of Submission: 14/09/2019
Time: 12:00 to 12:30
Q. 1 Answer the following questions.

1) Prove that a subgroup of index 2 in a group is a normal subgroup.
2) State and prove Cayley's theorem for group.
3) Prove that a subgroup H of a group G is a normal subgroup if and only if

$$
\left(\boldsymbol{H}_{\boldsymbol{a}}\right)\left(\boldsymbol{H}_{\boldsymbol{b}}\right)=\boldsymbol{H}(\boldsymbol{a b}), \forall a, b \in \boldsymbol{G} .
$$

4) A subgroup H of a group G is a normal subgroup if and only if $a h a^{-1} \in H, \forall a \in G, \forall h \in H$.
5) Let H be a normal subgroup of a group G. Then the set G / H of all right cosets of H in G form a group with respect to the product of cosets of H in G.
