Assignment-1 B. Sc. Semester-III (2019-20)

Mathematics Paper- 03(A)

Date of Submission: 13/08/2019 Time: 01:45 to 02:40

Q. 1 Answer the following questions.

1) Show that the sequence $\{S_n\}$ defined by $S_1 = 1$, $S_{n+1} = \frac{4+3S_n}{3+2S_n}$, $\forall n \in N$ is convergent and find its limit.

2) State and prove Cauchy's first theorem on limit.

3) Prove that every convergent sequence has a unique limit.

4) Prove that monotonic increasing and bounded above sequence is convergent.

5) Show that $\{S_n\}$ is divergent where $S_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$.

Assignment-2 B. Sc. Semester-III (2019-20)

Mathematics Paper- 03(A)

Date of Submission: 27/08/2019 Time: 01:45 to 02:40

Q. 1 Answer the following questions.

1) Prove that $rl(\varphi \bar{f}) = \varphi cur l \bar{f} + grad \varphi \times \bar{f}$.

2) If \overline{f} and \overline{g} are irrational functions on D then show that $\overline{f} \times \overline{g}$ is a solenoidal function.

3) In usual notation prove that $dir(r^n\overline{r}) = (n+3)r^n$.

4) If $\overline{u} = log(x^2 + y^2 + z^2)$, then find (i) $grad\overline{u}$ (ii) $div(grad\overline{u})$ at the point (1, 2, 3).

5) Prove that $\nabla^2(logr) = \frac{1}{r^2}$ where $r = |\overline{r}| = \sqrt{x^2 + y^2 + z^2}$.

Assignment-3 B. Sc. Semester-III (2019-20)

Mathematics Paper- 03(A)

Date of Submission: 06/09/2019 Time: 01:45 to 02:40

Q. 1 Answer the following questions.

- 1) Discuss the convergence of the series $1 + 2^2 \cdot x + 3^2 \cdot x^2 + 4^2 \cdot x^3 + \cdots$
- 2) Show that the series $\sum_{i=1}^{\infty} (-1)^n (\sqrt{n^2 + 1} n)$ is conditionally convergent.
- 3) Prove that $\beta(p, q) = \int_0^1 \frac{x^{p-1}+x^{q-1}}{(1+x)^{p+q}} dx$, where p > 0, q > 0.

4) Prove that $\beta(m, n) = \beta(m + 1, n) + \beta(m, n + 1)$.

5) Derive the relation between Beta and Gamma function.

Assignment-4 B. Sc. Semester-III (2019-20)

Mathematics Paper- 03(A)

 Date of Submission: 14/09/2019
 Time: 01:45 to 02:40

Q. 1 Answer the following questions.

1) Find $\int_C xy dx + (x^2 + y^2) dy$, where *C* is an arc of curve $y = x^2 - 4$ from (2,0) to (4,12).

2) State and prove Green's theorem.

3) Verify Stokes theorem for $\overline{F} = x^2 \overline{\iota} + xy \overline{j}$ and S is a square whose sides are x=0, y=0, x=a, y=a, where z=0.

4) Find $\iint_S x^2 dy dz + y^2 dz dx + 2z(xy - x - y) dx dy$, where $S: 0 \le x$, $y, z \le 1$ a solid surface.

5) Verify Gauss divergence theorem for $\iint_S x dy dz + y dz dx + z dx dy$, where S is upper hemiellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, z > 0.